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Plan

I Distributed concurrent objects in Creol: previous lecture
I Semantics and execution platform: previous lecture
I Reasoning about Creol models: today
I Runtime evolution of Creol models: today

Note: Today’s topics are very much “work in progress”.
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Repetition

Flashback

I An executable OO modelling language
I Formally defined semantics in rewriting logic
I Targets open distributed systems
I Abstracts from the particular properties of

the (object) scheduling and of the (network) environment
I The language design should support verification

I Key concepts: concurrent objects, interfaces,
asynchronous method calls, suspension points, . . .
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Repetition Example

Example: A Bank Account

interface Client
begin with Account

op giveCode (out code : Int)
end

interface DepositAccount
begin with Any

op deposit (in sum : Int, out return : Bool)
end

interface Account inherits DepositAccount
begin with Client

op transfer (in sum : Int, acc : Account; out return : Bool)
end
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Repetition Example

Example: A Bank Account (2)
class BankAccount implements Account
begin
var bal : Int := 0; var f : Label[Bool];

op verify(in code:Int)== . . .

with Any
op deposit (in sum : Int, out return : Bool) ==

bal := bal+sum; return := true

with Client
op transfer (in sum : Int, acc : Account; out return : Bool) ==
await caller!giveCode(code);
if verify(code)
then await bal ≥ sum ; bal := bal−sum;
f!acc.deposit(sum); await f?; return := true

else return := false end
end
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Typing

Typing

I Context Γ: interfaces ΓI , classes ΓC , variables ΓV

I Context overriding: Γ + ∆ is Γ overridden by ∆

I Judgments Γ ` s

The type system (sketch):

(Var)
Γ(v) = T
Γ ` v : T

(Get)
Γ(x) = T Γ ` v : Label[T ]

Γ ` v?(x) : ok

(New)
∃T ′ ∈ interfaces(ΓC(C)) · T ′ � T

Γ ` new C( ) : T

(Class)

∀M ∈ with I M · Γ + [attr(C)] + [caller 7→v I ] ` M : ok
∀I ∈ I · implements(ΓC(ΓV(self)), I )

Γ ` class C implements I begin inherits C var f T ; with I M end : ok

Type soundness:
no method-not-understood errors at run-time for well-typed programs
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Reasoning about Creol Objects

Reasoning about Creol Objects

I Creol objects are typically non-terminating
I Object state strictly encapsulated by the interfaces
I At most one active process at a time inside the object
I Unspecified (cooperative) scheduling

I Basic idea: Objects as maintainers of invariants

I Local class invariant i: maintenance of local state
I Global invariant I: properties of futures (method calls)
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Reasoning about Creol Objects

Behavioral Types

I Annotate interfaces with specs of external properties

interface Account inherits DepositAccount
begin with Client

op transfer (in sum : Int, acc : Account; out return : Bool) sat (p,q)
end

How to specify these properties?
I Simple case: relate inputs to outputs
I Strengthen specs with auxiliary variables
I The history of observable communication (local trace)
I Specify restrictions (invariant) on local sequence of interaction
I Alphabet of observables given by interface and caller’s cointerface
I deposit and transfer (from interface), giveCode (from cointerface)
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Reasoning about Creol Objects

Example: More expressive behavioral types (Larch style)
We can assume that

I an invocation is reflected in the history by an invoc message
I a completion is reflected by a comp message
I histories are well-formed

Define balance : Seq[α(Account)] → Bool

balance(ε)=0
balance(h ` comp(deposit(sum)))= balance(h) + sum
balance(h ` comp(transfer(sum, acc)))= balance(h) − sum
balance(h ` others)= balance(h)

transfer_ok(h,sum, o)= balance(h) ≥ sum ∧ h/o ew comp(giveCode,. . . )

Now, transfer_ok(h,sum,o) can now be used as a postcondition to
transfer-calls from o, or as an invariant AI(h) at the interface level

AI(h) = h ew comp(transfer, sum, o) ⇒ transfer_ok(h,sum,o)
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Reasoning about Creol Objects

Internal Reasoning (1)

I Class invariant
I For each method declaration: pre/postconditions and proof outline

Proof obligation

I A class must satisfy local and global invariants
I Applies to all methods in the class

Example
Without histories: bal ≥ 0

With histories: bal ≥ 0 ∧ bal = balance(h/α(Account))
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Reasoning about Creol Objects

Internal Reasoning (2)

I Let us consider a local execution in an object

Init p1    p2 p1    p3 p2 p3I I I I I I I

I Basic idea for the partial correctness proof theory
Objects as maintainers of local invariants i

I Standard weakest precondition proof rules
I Rule for await-statements

i ∧ g ⇒ q
{i} await g {q}
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Reasoning about Creol Objects

The Global Invariant

What is the global invariant?
I Imposes restrictions on the values of comp-messages (futures)
I Representation of the behavioral type system
I Relates completions to invocations
I Relates object histories after projection to interface alphabets

Proof obligation: A class does not violate the global invariant
I Induction over the methods again
I The class implements its declared interfaces
I The class does not violate preconditions from other interfaces
I If the global invariant is history-based, then the local invariant will also

need to construct a history. This typically relates the internal state
with the observable communication (trace) of an object.
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Reasoning about Creol Objects

Global Reasoning: Example

interface Account inherits DepositAccount
begin with Client

op transfer (in sum : Int, acc : Account; out return : Bool)
invariant AI(h)
end

Let H denote the global history.

I(H)= well-formed(H) ∧ . . .∧ AI(H/α(Account)) ∧ . . .

(Composition technique for local reasoning, Soundararajan TOPLAS 1984)
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Reasoning about Creol Objects

Verification vs. Testing

I Work on testing objects wrt. behavioral interfaces
I Larch-style specs. give confluent and terminating rewrite system
I Restrictions on object input, requirement on object output
I Use Maude to simulate an open environment for an object,

based on its interface
I May add scheduler to the object to restrict non-determinism

in order to comply with the interface requirement
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Reasoning about Creol Objects

Inheritance and Behavioral Subtyping

The separation of interface and class inheritance allows a flexible form of
code reuse.

I Behavioral subtyping requirements apply to subinterfaces
I A class must maintain its own invariant and the global invariant
I A class need not maintain superclass’ invariants
I Class inheritance may use lazy behavioral subtyping,

which supports incremental reasoning
I LBS tracks exactly which properties need to be maintained

by method redefinitions in subclasses
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System Evolution by Dynamic Class Upgrades

System Evolution in Creol

I Distributed systems need modifications due to
I Bug fixes
I New user requirements
I Changing system environments

I Critical systems need to evolve without compromising availability!
I E.g., Bank systems and air traffic control systems

I Evolution must happen at runtime
I Modifications must be safe
I Focus so far: type safety
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System Evolution by Dynamic Class Upgrades

Dynamic Class Upgrades in Creol

I Balance flexibility, ease of use, robustness
I A modular OO upgrade mechanism
I Asynchronous upgrades propagate

through the dist. system
I Modify class definitions at runtime

I Class upgrade affects:
I All future instances of the class

and its subclasses
I All existing instances of the class

and its subclasses

D

Network

A
B

C E
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System Evolution by Dynamic Class Upgrades

Which changes are supported?

I Introduce new classes in the running system
I Provide new services by introducing new interfaces
I Modify an existing class in the class hierarchy
I Which modifications can we allow?

I Add / remove interfaces?
I Add /remove class parameters?
I Add / remove fields?
I Add /remove methods?
I Redefine methods?
I Add /remove superclasses?
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System Evolution by Dynamic Class Upgrades

Example of a Class Upgrade: Bank Account
class BankAccount implements Account begin // Original
var bal : Int := 0; var f : Label[Bool];
with Any

op deposit (in sum : Int, out ret : Bool) == bal := bal+sum; ret := true
with Client

op transfer (in sum : Int, acc : Account; out ret : Bool) ==
await bal ≥ sum ; bal := bal−sum; f!acc.deposit(sum); ret := true

end

update BankAccount implements ∅ inherits ∅ begin
var overdraft : Nat := 0
with Client

op transfer (Nat sum, Account acc; out ret : Bool) ==
await bal ≥ (sum−overdraft); bal := bal−sum;

f := acc!deposit(sum); ret := true
with Banker

op setOverdraft (max: Nat) == overdraft := max
end
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System Evolution by Dynamic Class Upgrades

Example of a Class Upgrade: Bank Account
class BankAccount implements Account begin // New version
var bal : Int := 0; var f : Label[Bool]; var overdraft : Nat := 0
with Any

op deposit (in sum : Int, out ret : Bool) == bal := bal+sum; ret := true
with Client

op transfer (Nat sum, Account acc; out ret : Bool) ==
await bal ≥ (sum−overdraft); bal := bal−sum;

f := acc!deposit(sum); ret := true
with Banker

op setOverdraft (max: Nat) == overdraft := max
end

update BankAccount implements ∅ inherits ∅ begin
await bal ≥ (sum−overdraft); bal := bal−sum;
f := acc!deposit(sum); ret := true
with Banker

op setOverdraft (max: Nat) == overdraft := max
end
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System Evolution by Dynamic Class Upgrades

Syntax for Dynamic Classes

U ::= new-class C implements I inherits C begin var f : T ; with I M end
| new-interface I inherits I begin with I Ms end
| update C implements I inherits C begin var f : T ; with I M end
| simplify C retract C begin var f : T ; with I M end

Challenges:
I The timing of async. upgrade operations at runtime
I New processes must execute on the new object state
I Old processes must execute on the old object state
I The operations may depend on each other!
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System Evolution by Dynamic Class Upgrades

Example

class C1 –– Version 2, Upgrade 1
begin
op run() == n(); run()
op n() == var o : I;

o := new C3; o.m()
end
class C2 –– Version 2, Upgrade 1
begin
op m() == Body
end
class C2 –– Version 2, Upgrade 1
begin

op m() == Body
end

class C3 –– Version 3, Upgrade 1
implements I
inherits C2
begin endclass C3 –– Version 3,
Upgrade 1
implements I
inherits C2
begin end

Versions and upgrades

I At runtime, classes have version numbers and upgrade numbers
I Upgrading a class directly or indirectly increases the version number
I Upgrading a class directly increases the upgrade number

the version
number of C3 is increased.
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System Evolution by Dynamic Class Upgrades

Making Dynamic Class Upgrades Type-Safe

I When can the upgrades be applied safely at runtime?
I There may be dependencies between different upgrades
I An upgrade may depend on earlier upgrades of the same class
I An upgrade may depend on the upgrades of superclasses
I An upgrade may depend on the upgrades of other classes
I The object state must be upgraded before executing new code

I Ensure that execution remains type-safe when classes change
asynchronously

I E.g., a redefined class (C3) supports its interfaces
I Methods are available when called

I Even if upgrades are well-typed, runtime errors may still occur if
upgrades are applied too early in the distributed setting
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Type Analysis of Class Upgrades

Type Analysis of Class Upgrades

I A program is type checked in a typing environment
I Runtime updates are type checked in a typing environment

I Consequently: the typing environment must evolve to reflect the
evolution of the runtime program

I Sequence of typing contexts Γ0, Γ1, Γ2, . . .

I Type analysis of the original program in Γ0

I Type analysis of an upgrade operation in Γi constructs Γi+1

I Approach: The type analysis uses a type and effect system
which modifies the typing environment

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 24 / 35



Type Analysis of Class Upgrades

Typing w/ Dependency Effects
I Context extended with dependencies Γd (class name + version)
I Judgments Γ ` s 〈Σ〉 where Σ is a set of dependencies
I [[v ]] represents the dependency information for v

(Var)
Γ(v) = T

Γ ` v : T 〈[[v ]]〉

(Get)
Γ(x) = T Γ ` v : Label[T ] 〈Σ〉

Γ ` v?(x) : ok 〈[[x ]] ∪ Σ〉

(New)
∃T ′ ∈ interfaces(ΓC(C)) · T ′ � T
Γ ` new C( ) : T 〈{〈C , curr(C , Γ)}〉

(Class)

∀M ∈ with I M · Γ + [attr(C)] + [caller7→v I ] ` M : ok 〈ΣM〉
∀I ∈ I · implements(ΓC(ΓV(self)), I )
Γ + [〈C , 0〉7→d

S
M∈M ΣM \ {〈C , 0〉}]

` class C implements I begin inherits C var f T ; with I M end : ok
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Type Analysis of Class Upgrades

Typing of Dynamic Class Constructs

(New-Class)
∆ = [C 7→C (C , I ,T f ,M)] C 6∈ dom(Γi

C)
Γi + ∆ + [this7→vC ] + ∆′ `

class C implements I begin inherits C var f T ; with I M end : ok
Γi + ∆ + [〈C , 1〉7→d∆′

d (〈C , 0〉)]

` new-class C implements I begin inherits C var f T ; with I M end : ok

(Class-Update)

Γi
C(C) = (C 1, I 1,T1 f1, with I1 M1)} n = curr(C , Γi

d ) refines(M2,M1)

∆ = [C 7→C (C 1;C 2, I 1; I 2, (T1 f1;T2 f2), (with I1 M1 ⊕ with I2 M2))]
Γi + ∆ + [this7→vC ] + ∆′ `
class C implements I 2 begin inherits C 2 var f2 T2; with I2 M2 end : ok

Γi + ∆ + [(C , n + 1) 7→d∆′
d (C , 0) ∪ {(C , n)}]

` update C implements I 2 begin inherits C 2 var f2 T2; with I2 M2 end : ok
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Type Analysis of Class Upgrades

After Type Analysis of an Upgrade Operation

I The type analysis gives us a new typing context for the analysis of the
next upgrade operation

I The dependency mapping gives us the dependencies of an upgrade
operation in terms of versions of other classes

At runtime
I Γd enforces an ordering of updates obeying static dependency

requirements
I Ensures appropriate timing for the application of each upgrade
I Upgrades which do not depend on each other may be applied in any

order (or in parallell)

I The requirements are used as an argument to the runtime upgrade
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An Operational Semantics for Class Upgrades

Semantics

Rough idea

I Upgrade messages are injected into the runtime configuration
I Messages propagate asynchronously
I Messages modify class representations when dependencies are resolved
I When to apply changes to objects: processor release!
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An Operational Semantics for Class Upgrades

An Operational Semantics for Class Upgrades

I Recall the operational semantics of Creol in rewriting logic
I The system configuration consists of classes, objects and messages
I Creol classes: 〈C#n : Cl |Upd : u, Inh : C ′#n′; . . .,Att,Mtds〉
I Creol objects: 〈o : Ob | Cl : C#n,Pr,PrQ,Att〉
I Rewrite rules and equations transform sub-configurations

Class upgrade
Given an well-typed upgrade term: upd (C , Imp, Inh,Var,Mtd)

I A class upgrade of C is realized through the insertion of a message
upgrade (C , Inh,Var,Mtd, Γd (〈C , curr(C , Γi

d )〉)) in the system
configuration at runtime

I Γ is the environment obtained from type checking the upgrade term
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An Operational Semantics for Class Upgrades

Direct class upgrade

upgrade (C , I,A,M, ((C ′ # n) R)) 〈C ′ # n′ :Class | Upd : u〉
−→ upgrade (C , I,A,M,R) 〈C ′ # n′ :Class | Upd : u〉 if u ≥ n

upgrade (C , I,A,M, ∅)
〈C # n :Class | Upd : u, Inh : I′,Att : A′,Mtds : M′〉
−→
〈C # (n + 1) :Class | Upd : u + 1, Inh : I′; I,Att : A′;A,Mtds : M′ ⊕M〉

Indirect class upgrade

〈C # n :Class | Inh : I; (C ′ # n′); I′〉 〈C ′ # n′′ :Class | 〉
= 〈C # (n + 1) :Class | Inh : I; (C ′ # n′′); I′〉 〈C ′ # n′′ :Class | 〉 if n′′ > n′
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An Operational Semantics for Class Upgrades

Object upgrade
Objects are upgraded in quiescent states:

the processor has been released and no pending process is activated yet.

〈o | Cl : C # n,Pr : ε〉 〈C # n′ :Class | Att : A〉
= 〈o | Cl : C # n′,Pr : idle〉 〈C # n′ :Class | Att : A〉

(getAttr(o,A) to C ) if n′ > n

getAttr traverses the inheritance graph above C and collects the (new)
object state, which is returned in a message gotAttr

(gotAttr(A′) to o) 〈o | Att : A〉 = 〈o | Att : A′〉
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An Operational Semantics for Class Upgrades

Type-Safe Upgrades
General case: Modify a class in a class hierarchy
Type correctness: Method binding
should still succeed!

I Add attributes, methods,
interfaces, superclasses

I Redefine methods
(subtyping discipline)

I Remove fields, methods
I Remove interfaces: not

supported
I Formal class parameters

may not be modified

Theorem. Dynamic class extensions are
type-safe in Creol’s extended type system
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Summary

Conclusion

I Formal framework for distributed concurrent objects
I Asynchronous method calls, interfaces, process scheduling, . . .
I Operational semantics, rewriting logic, Maude
I Proof systems based on invariant reasoning
I System evolution through dynamic classes
I Use of static analyis for runtime constraints gives type safe upgrades
I Reasoning about dyn. classes: open issue!

http://www.ifi.uio.no/˜ creol
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Summary
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Summary

Dynamic class upgrades.
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