
An abstract behavioral model
of distributed concurrent objects (2)

Einar Broch Johnsen

Dept. of Informatics, University of Oslo
Email: einarj@ifi.uio.no

COST Action IC0701 Winter School
on Verification of Object-Oriented Programs,

Viinistu, Estonia, Jan 29 2009

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 1 / 35

Plan

I Distributed concurrent objects in Creol: previous lecture
I Semantics and execution platform: previous lecture
I Reasoning about Creol models: today
I Runtime evolution of Creol models: today

Note: Today’s topics are very much “work in progress”.

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 2 / 35

Repetition

Flashback

I An executable OO modelling language
I Formally defined semantics in rewriting logic
I Targets open distributed systems
I Abstracts from the particular properties of

the (object) scheduling and of the (network) environment
I The language design should support verification

I Key concepts: concurrent objects, interfaces,
asynchronous method calls, suspension points, . . .

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 3 / 35

Repetition Example

Example: A Bank Account

interface Client
begin with Account

op giveCode (out code : Int)
end

interface DepositAccount
begin with Any

op deposit (in sum : Int, out return : Bool)
end

interface Account inherits DepositAccount
begin with Client

op transfer (in sum : Int, acc : Account; out return : Bool)
end

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 4 / 35

Repetition Example

Example: A Bank Account (2)
class BankAccount implements Account
begin
var bal : Int := 0; var f : Label[Bool];

op verify(in code:Int)== . . .

with Any
op deposit (in sum : Int, out return : Bool) ==

bal := bal+sum; return := true

with Client
op transfer (in sum : Int, acc : Account; out return : Bool) ==
await caller!giveCode(code);
if verify(code)
then await bal ≥ sum ; bal := bal−sum;
f!acc.deposit(sum); await f?; return := true

else return := false end
end

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 5 / 35

Typing

Typing

I Context Γ: interfaces ΓI , classes ΓC , variables ΓV

I Context overriding: Γ + ∆ is Γ overridden by ∆

I Judgments Γ ` s

The type system (sketch):

(Var)
Γ(v) = T
Γ ` v : T

(Get)
Γ(x) = T Γ ` v : Label[T]

Γ ` v?(x) : ok

(New)
∃T ′ ∈ interfaces(ΓC(C)) · T ′ � T

Γ ` new C() : T

(Class)

∀M ∈ with I M · Γ + [attr(C)] + [caller 7→v I] ` M : ok
∀I ∈ I · implements(ΓC(ΓV(self)), I)

Γ ` class C implements I begin inherits C var f T ; with I M end : ok

Type soundness:
no method-not-understood errors at run-time for well-typed programs

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 6 / 35

Reasoning about Creol Objects

Reasoning about Creol Objects

I Creol objects are typically non-terminating
I Object state strictly encapsulated by the interfaces
I At most one active process at a time inside the object
I Unspecified (cooperative) scheduling

I Basic idea: Objects as maintainers of invariants

I Local class invariant i: maintenance of local state
I Global invariant I: properties of futures (method calls)

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 7 / 35

Reasoning about Creol Objects

Behavioral Types

I Annotate interfaces with specs of external properties

interface Account inherits DepositAccount
begin with Client

op transfer (in sum : Int, acc : Account; out return : Bool) sat (p,q)
end

How to specify these properties?
I Simple case: relate inputs to outputs
I Strengthen specs with auxiliary variables
I The history of observable communication (local trace)
I Specify restrictions (invariant) on local sequence of interaction
I Alphabet of observables given by interface and caller’s cointerface
I deposit and transfer (from interface), giveCode (from cointerface)

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 8 / 35

Reasoning about Creol Objects

Example: More expressive behavioral types (Larch style)
We can assume that

I an invocation is reflected in the history by an invoc message
I a completion is reflected by a comp message
I histories are well-formed

Define balance : Seq[α(Account)] → Bool

balance(ε)=0
balance(h ` comp(deposit(sum)))= balance(h) + sum
balance(h ` comp(transfer(sum, acc)))= balance(h) − sum
balance(h ` others)= balance(h)

transfer_ok(h,sum, o)= balance(h) ≥ sum ∧ h/o ew comp(giveCode,. . .)

Now, transfer_ok(h,sum,o) can now be used as a postcondition to
transfer-calls from o, or as an invariant AI(h) at the interface level

AI(h) = h ew comp(transfer, sum, o) ⇒ transfer_ok(h,sum,o)

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 9 / 35

Reasoning about Creol Objects

Internal Reasoning (1)

I Class invariant
I For each method declaration: pre/postconditions and proof outline

Proof obligation

I A class must satisfy local and global invariants
I Applies to all methods in the class

Example
Without histories: bal ≥ 0

With histories: bal ≥ 0 ∧ bal = balance(h/α(Account))

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 10 / 35

Reasoning about Creol Objects

Internal Reasoning (2)

I Let us consider a local execution in an object

Init p1 p2 p1 p3 p2 p3I I I I I I I

I Basic idea for the partial correctness proof theory
Objects as maintainers of local invariants i

I Standard weakest precondition proof rules
I Rule for await-statements

i ∧ g ⇒ q
{i} await g {q}

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 11 / 35

Reasoning about Creol Objects

The Global Invariant

What is the global invariant?
I Imposes restrictions on the values of comp-messages (futures)
I Representation of the behavioral type system
I Relates completions to invocations
I Relates object histories after projection to interface alphabets

Proof obligation: A class does not violate the global invariant
I Induction over the methods again
I The class implements its declared interfaces
I The class does not violate preconditions from other interfaces
I If the global invariant is history-based, then the local invariant will also

need to construct a history. This typically relates the internal state
with the observable communication (trace) of an object.

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 12 / 35

Reasoning about Creol Objects

Global Reasoning: Example

interface Account inherits DepositAccount
begin with Client

op transfer (in sum : Int, acc : Account; out return : Bool)
invariant AI(h)
end

Let H denote the global history.

I(H)= well-formed(H) ∧ . . .∧ AI(H/α(Account)) ∧ . . .

(Composition technique for local reasoning, Soundararajan TOPLAS 1984)

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 13 / 35

Reasoning about Creol Objects

Verification vs. Testing

I Work on testing objects wrt. behavioral interfaces
I Larch-style specs. give confluent and terminating rewrite system
I Restrictions on object input, requirement on object output
I Use Maude to simulate an open environment for an object,

based on its interface
I May add scheduler to the object to restrict non-determinism

in order to comply with the interface requirement

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 14 / 35

Reasoning about Creol Objects

Inheritance and Behavioral Subtyping

The separation of interface and class inheritance allows a flexible form of
code reuse.

I Behavioral subtyping requirements apply to subinterfaces
I A class must maintain its own invariant and the global invariant
I A class need not maintain superclass’ invariants
I Class inheritance may use lazy behavioral subtyping,

which supports incremental reasoning
I LBS tracks exactly which properties need to be maintained

by method redefinitions in subclasses

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 15 / 35

System Evolution by Dynamic Class Upgrades

System Evolution in Creol

I Distributed systems need modifications due to
I Bug fixes
I New user requirements
I Changing system environments

I Critical systems need to evolve without compromising availability!
I E.g., Bank systems and air traffic control systems

I Evolution must happen at runtime
I Modifications must be safe
I Focus so far: type safety

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 16 / 35

System Evolution by Dynamic Class Upgrades

Dynamic Class Upgrades in Creol

I Balance flexibility, ease of use, robustness
I A modular OO upgrade mechanism
I Asynchronous upgrades propagate

through the dist. system
I Modify class definitions at runtime

I Class upgrade affects:
I All future instances of the class

and its subclasses
I All existing instances of the class

and its subclasses

D

Network

A
B

C E

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 17 / 35

System Evolution by Dynamic Class Upgrades

Which changes are supported?

I Introduce new classes in the running system
I Provide new services by introducing new interfaces
I Modify an existing class in the class hierarchy
I Which modifications can we allow?

I Add / remove interfaces?
I Add /remove class parameters?
I Add / remove fields?
I Add /remove methods?
I Redefine methods?
I Add /remove superclasses?

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 18 / 35

System Evolution by Dynamic Class Upgrades

Example of a Class Upgrade: Bank Account
class BankAccount implements Account begin // Original
var bal : Int := 0; var f : Label[Bool];
with Any

op deposit (in sum : Int, out ret : Bool) == bal := bal+sum; ret := true
with Client

op transfer (in sum : Int, acc : Account; out ret : Bool) ==
await bal ≥ sum ; bal := bal−sum; f!acc.deposit(sum); ret := true

end

update BankAccount implements ∅ inherits ∅ begin
var overdraft : Nat := 0
with Client

op transfer (Nat sum, Account acc; out ret : Bool) ==
await bal ≥ (sum−overdraft); bal := bal−sum;

f := acc!deposit(sum); ret := true
with Banker

op setOverdraft (max: Nat) == overdraft := max
end

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 19 / 35

System Evolution by Dynamic Class Upgrades

Example of a Class Upgrade: Bank Account
class BankAccount implements Account begin // New version
var bal : Int := 0; var f : Label[Bool]; var overdraft : Nat := 0
with Any

op deposit (in sum : Int, out ret : Bool) == bal := bal+sum; ret := true
with Client

op transfer (Nat sum, Account acc; out ret : Bool) ==
await bal ≥ (sum−overdraft); bal := bal−sum;

f := acc!deposit(sum); ret := true
with Banker

op setOverdraft (max: Nat) == overdraft := max
end

update BankAccount implements ∅ inherits ∅ begin
await bal ≥ (sum−overdraft); bal := bal−sum;
f := acc!deposit(sum); ret := true
with Banker

op setOverdraft (max: Nat) == overdraft := max
end

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 20 / 35

System Evolution by Dynamic Class Upgrades

Syntax for Dynamic Classes

U ::= new-class C implements I inherits C begin var f : T ; with I M end
| new-interface I inherits I begin with I Ms end
| update C implements I inherits C begin var f : T ; with I M end
| simplify C retract C begin var f : T ; with I M end

Challenges:
I The timing of async. upgrade operations at runtime
I New processes must execute on the new object state
I Old processes must execute on the old object state
I The operations may depend on each other!

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 21 / 35

System Evolution by Dynamic Class Upgrades

Example

class C1 –– Version 2, Upgrade 1
begin
op run() == n(); run()
op n() == var o : I;

o := new C3; o.m()
end
class C2 –– Version 2, Upgrade 1
begin
op m() == Body
end
class C2 –– Version 2, Upgrade 1
begin

op m() == Body
end

class C3 –– Version 3, Upgrade 1
implements I
inherits C2
begin endclass C3 –– Version 3,
Upgrade 1
implements I
inherits C2
begin end

Versions and upgrades

I At runtime, classes have version numbers and upgrade numbers
I Upgrading a class directly or indirectly increases the version number
I Upgrading a class directly increases the upgrade number

the version
number of C3 is increased.

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 22 / 35

System Evolution by Dynamic Class Upgrades

Making Dynamic Class Upgrades Type-Safe

I When can the upgrades be applied safely at runtime?
I There may be dependencies between different upgrades
I An upgrade may depend on earlier upgrades of the same class
I An upgrade may depend on the upgrades of superclasses
I An upgrade may depend on the upgrades of other classes
I The object state must be upgraded before executing new code

I Ensure that execution remains type-safe when classes change
asynchronously

I E.g., a redefined class (C3) supports its interfaces
I Methods are available when called

I Even if upgrades are well-typed, runtime errors may still occur if
upgrades are applied too early in the distributed setting

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 23 / 35

Type Analysis of Class Upgrades

Type Analysis of Class Upgrades

I A program is type checked in a typing environment
I Runtime updates are type checked in a typing environment

I Consequently: the typing environment must evolve to reflect the
evolution of the runtime program

I Sequence of typing contexts Γ0, Γ1, Γ2, . . .

I Type analysis of the original program in Γ0

I Type analysis of an upgrade operation in Γi constructs Γi+1

I Approach: The type analysis uses a type and effect system
which modifies the typing environment

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 24 / 35

Type Analysis of Class Upgrades

Typing w/ Dependency Effects
I Context extended with dependencies Γd (class name + version)
I Judgments Γ ` s 〈Σ〉 where Σ is a set of dependencies
I [[v]] represents the dependency information for v

(Var)
Γ(v) = T

Γ ` v : T 〈[[v]]〉

(Get)
Γ(x) = T Γ ` v : Label[T] 〈Σ〉

Γ ` v?(x) : ok 〈[[x]] ∪ Σ〉

(New)
∃T ′ ∈ interfaces(ΓC(C)) · T ′ � T
Γ ` new C() : T 〈{〈C , curr(C , Γ)}〉

(Class)

∀M ∈ with I M · Γ + [attr(C)] + [caller7→v I] ` M : ok 〈ΣM〉
∀I ∈ I · implements(ΓC(ΓV(self)), I)
Γ + [〈C , 0〉7→d

S
M∈M ΣM \ {〈C , 0〉}]

` class C implements I begin inherits C var f T ; with I M end : ok

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 25 / 35

Type Analysis of Class Upgrades

Typing of Dynamic Class Constructs

(New-Class)
∆ = [C 7→C (C , I ,T f ,M)] C 6∈ dom(Γi

C)
Γi + ∆ + [this7→vC] + ∆′ `

class C implements I begin inherits C var f T ; with I M end : ok
Γi + ∆ + [〈C , 1〉7→d∆′

d (〈C , 0〉)]

` new-class C implements I begin inherits C var f T ; with I M end : ok

(Class-Update)

Γi
C(C) = (C 1, I 1,T1 f1, with I1 M1)} n = curr(C , Γi

d) refines(M2,M1)

∆ = [C 7→C (C 1;C 2, I 1; I 2, (T1 f1;T2 f2), (with I1 M1 ⊕ with I2 M2))]
Γi + ∆ + [this7→vC] + ∆′ `
class C implements I 2 begin inherits C 2 var f2 T2; with I2 M2 end : ok

Γi + ∆ + [(C , n + 1) 7→d∆′
d (C , 0) ∪ {(C , n)}]

` update C implements I 2 begin inherits C 2 var f2 T2; with I2 M2 end : ok

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 26 / 35

Type Analysis of Class Upgrades

After Type Analysis of an Upgrade Operation

I The type analysis gives us a new typing context for the analysis of the
next upgrade operation

I The dependency mapping gives us the dependencies of an upgrade
operation in terms of versions of other classes

At runtime
I Γd enforces an ordering of updates obeying static dependency

requirements
I Ensures appropriate timing for the application of each upgrade
I Upgrades which do not depend on each other may be applied in any

order (or in parallell)

I The requirements are used as an argument to the runtime upgrade

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 27 / 35

An Operational Semantics for Class Upgrades

Semantics

Rough idea

I Upgrade messages are injected into the runtime configuration
I Messages propagate asynchronously
I Messages modify class representations when dependencies are resolved
I When to apply changes to objects: processor release!

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 28 / 35

An Operational Semantics for Class Upgrades

An Operational Semantics for Class Upgrades

I Recall the operational semantics of Creol in rewriting logic
I The system configuration consists of classes, objects and messages
I Creol classes: 〈C#n : Cl |Upd : u, Inh : C ′#n′; . . .,Att,Mtds〉
I Creol objects: 〈o : Ob | Cl : C#n,Pr,PrQ,Att〉
I Rewrite rules and equations transform sub-configurations

Class upgrade
Given an well-typed upgrade term: upd (C , Imp, Inh,Var,Mtd)

I A class upgrade of C is realized through the insertion of a message
upgrade (C , Inh,Var,Mtd, Γd (〈C , curr(C , Γi

d)〉)) in the system
configuration at runtime

I Γ is the environment obtained from type checking the upgrade term

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 29 / 35

An Operational Semantics for Class Upgrades

Direct class upgrade

upgrade (C , I,A,M, ((C ′ # n) R)) 〈C ′ # n′ :Class | Upd : u〉
−→ upgrade (C , I,A,M,R) 〈C ′ # n′ :Class | Upd : u〉 if u ≥ n

upgrade (C , I,A,M, ∅)
〈C # n :Class | Upd : u, Inh : I′,Att : A′,Mtds : M′〉
−→
〈C # (n + 1) :Class | Upd : u + 1, Inh : I′; I,Att : A′;A,Mtds : M′ ⊕M〉

Indirect class upgrade

〈C # n :Class | Inh : I; (C ′ # n′); I′〉 〈C ′ # n′′ :Class | 〉
= 〈C # (n + 1) :Class | Inh : I; (C ′ # n′′); I′〉 〈C ′ # n′′ :Class | 〉 if n′′ > n′

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 30 / 35

An Operational Semantics for Class Upgrades

Object upgrade
Objects are upgraded in quiescent states:

the processor has been released and no pending process is activated yet.

〈o | Cl : C # n,Pr : ε〉 〈C # n′ :Class | Att : A〉
= 〈o | Cl : C # n′,Pr : idle〉 〈C # n′ :Class | Att : A〉

(getAttr(o,A) to C) if n′ > n

getAttr traverses the inheritance graph above C and collects the (new)
object state, which is returned in a message gotAttr

(gotAttr(A′) to o) 〈o | Att : A〉 = 〈o | Att : A′〉

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 31 / 35

An Operational Semantics for Class Upgrades

Type-Safe Upgrades
General case: Modify a class in a class hierarchy
Type correctness: Method binding
should still succeed!

I Add attributes, methods,
interfaces, superclasses

I Redefine methods
(subtyping discipline)

I Remove fields, methods
I Remove interfaces: not

supported
I Formal class parameters

may not be modified

Theorem. Dynamic class extensions are
type-safe in Creol’s extended type system

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 32 / 35

Summary

Conclusion

I Formal framework for distributed concurrent objects
I Asynchronous method calls, interfaces, process scheduling, . . .
I Operational semantics, rewriting logic, Maude
I Proof systems based on invariant reasoning
I System evolution through dynamic classes
I Use of static analyis for runtime constraints gives type safe upgrades
I Reasoning about dyn. classes: open issue!

http://www.ifi.uio.no/˜ creol

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 33 / 35

Summary

Creol — Some Selected References

The communication model.
E. B. Johnsen, O. Owe. An Asynchronous Communication Model for Distributed
Concurrent Objects. Software and System Modeling 6(1): 39-58, 2007.

F. S. de Boer, D. Clarke, E. B. Johnsen. A Complete Guide to the Future.
Proc. ESOP’07. LNCS 4421, pp. 316–330. Springer 2007.

Multiple inheritance, method binding.
E. B. Johnsen, O. Owe. A Dynamic Binding Strategy for Multiple Inheritance and
Asynchronously Communicating Objects. Proc. FMCO’04. LNCS 3657, pp. 274–295.
Springer 2005.

Typing, static analysis.
E. B. Johnsen, O. Owe, I. C. Yu. Creol: A Type-Safe Object-Oriented Model for
Distributed Concurrent Systems. Theoretical Computer Science 365: 23–66, 2006.

E. B. Johnsen, I. C. Yu. Backwards Type Analysis for Asynchronous Method Calls.
J. of Logic and Algebraic Programming 77: 40-59, 2008.

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 34 / 35

Summary

Dynamic class upgrades.
E. B. Johnsen, O. Owe, I. Simplot-Ryl. A Dynamic Class Construct for Asynchronous
Concurrent Objects. Proc. FMOODS’05. LNCS 3535, 15–30. Springer 2005.

I. C. Yu, E. B. Johnsen, O. Owe. Type-Safe Runtime Class Upgrades in Creol.
Proc. FMOODS’06. LNCS 4037, 202–217. Springer 2006.

Analysis.
J. Dovland, E. B. Johnsen, O. Owe. Observable Behavior of Dynamic Systems:
Component Reasoning for Concurrent Objects. Proc. FInCo’07. ENTCS 203.
Elsevier 2008.

J. Dovland, E. B. Johnsen, O. Owe, M. Steffen. Lazy Behavioral Subtyping.
Proc. FM’08. LNCS 5014. Springer 2008.

E. B. Johnsen, O. Owe, A. B. Torjusen. Validating Behavioral Component Interfaces in
Rewriting Logic. Fundamenta Informaticae 82 (4): 341-359, 2008.

R. Schlatte, B. Aichernig, F. de Boer, A. Griesmayer, E. B. Johnsen.
Testing Concurrent Objects with Application-Specific Schedulers. Proc. ICTAC’08.
LNCS 5060, 319–333. Springer 2008

Einar Broch Johnsen (Univ. of Oslo) Distributed Concurrent Objects (2) 29.01.2009 35 / 35

	Repetition
	Example

	Typing
	Verification of Creol Models
	Reasoning about Creol Objects
	System Evolution by Dynamic Class Upgrades
	Type Analysis of Class Upgrades
	An Operational Semantics for Class Upgrades
	Summary

