Modular Verification in
Object-oriented
Programming

Arnd Poetzsch-Heffter

University of Kaiserslautern

o

LLIX.

Wigsbadg_n Lam Main

j‘é_u';ﬁﬂannheim

Lk
15

BSalfe

Sea __,Jﬁ
1
POL.
M
bt Dmsburg fa_gd&.-trurg
EDUEEEIHD[T I":E.'E$E| - E -
1{::r_':.|ﬂ.gn.g Dresdean™-- .

Frankfurt

CZECH
REPUBLIC

L
Karisrune ~ Nurnberg

Kaiserslautern '51”“9?5!—[,_1-,;{{-3% b '
IHAHEE . fiﬂ"ll.lﬂiﬁh_ T
N~ | AUSTRIA ~
™, Jugsmize D50 100 km
; SWITZ. 5 £ L0 50 100

Cost Winter School 2009

@ Arnd Poetzsch-Heffter

[]
O 0e
[}
Arbeitsgruppe Softwaretechnik

Overview:

* Introduction
* Modular Verification of Classes with Spec#
* Modular Behavioural Specification (& Verification)

* Concluding Remarks

Slides partially adopted from

Mike Barnett, Manuel Fahndrich, Rustan Leino,
Peter Muller, and Wolfram Schulte

MANY THANKS TO THEM

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

1. Introduction

Source Lines (millions)

40

35 +

30 +

25 +

N | inux
20 + 1 Windows
—e— Solaris

15 +

10 + |

/
0 m I

1980 1990 1992 1994 1996 1998 2000 2002

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

Goals of static and dynamic verification:

1. Detection of programming errors:
- No IndexOutOfBounds-, NullPointer-, Cast-,
DivisionByZero-exception

- Language-based properties: no need for specification

2. Guaranteed/checked program-specific properties:

- Specification of properties: need for spec. language

- Support of behavioral abstraction

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SoT-eX

class Simple {

int a, b;
How can we

prove it
public Simple(int ap, int bp) modularily?

{ a=ap; b=Dbp;}

public int Foo(int x)

{
int tmp = xub-a);\ O
a +=tmp; b+=tmp;

T @)

return b-a; No division by zero!

}

}

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SoT-eX

class Simple {
int a, b;

invariant a < b;
public Simple(int ap, int bp)
requires ap < bp;
ensures a==ap && b==bp;
{ a=ap; b=bp;}

public int Foo(int x)
ensures result > 0;

... I/ see above

1}

d

program-specific
specification

When is a specification
“sufficient” for modular
verification?

Cost Winter School 2009

@ Arnd Poetzsch-Heffter

n
o 0e
[}
Arbeitsgruppe Softwaretechnik

interface Simple {

model int c; :
| | | behavioral spec
public Simple(int ap, int bp) at boundary
] /
requires ap <bp; _—]
ensures c == bp-ap ; O

public int Foo(int x)
ensures result == c;

precisely

"1
What is the boundary

of an object or
of class/module?

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

Goals of modularity:

2.Verification of modules/libraries without knowing the

application context:

2. Module contracts:

3. Scalability through compositionality:

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

unknown

... at verification time

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

Modular verification technique:

a) Technique(s) to verify program modules

*Proof of modular soundness:

Modularity depends on sophisticated interplay of:

- Programming language semantics
- Specification language and technique

- Programming logic

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SoT-eX

Modular Verification Technique: A Gedankenexperiment

- Programming language:
Class-based language w/o inheritance and subtyping
No reference types for fields
No recursive methods, sequential statements/expressions

- Specification language and technique:
Pre-, postconditions, object invariants
Assertions: boolean expressions over fields and params

- Programming logic:
Wop-calculus for method bodies
Preconditions & invariants may be assumed in prestates
Postconditions & invariants have to be proven for poststates
Pre-/postconditions may be used to verify calls

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

class Simple {
int a, b;
invariant a < b;
public Simple(int ap, int bp)
requires ap < bp;
{ a=ap; b=Dbp;}

public int Foo(int x) {
inttmp = x/ (b-a);
a +=tmp; b+=tmp;
return b-a;

}

public void Woo(C cp) {
a=0;
cp.Doo(this);
b=a+1,
}
}

class C {
invariant ... ;
public void Doo(Simple s)

{..)
}

Cost Winter School 2009

@ Arnd Poetzsch-Heffter

n
o 0e
[}
Arbeitsgruppe Softwaretechnik

At least four problems:

1. Fields are not encapsulated

Simple s = new Simple(0,1);
s.a =1,

2. Callbacks are possible on objects with violated invariants

public void Doo(Simple s)
{ s.Foo(1); }

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

(_ problems continued:)

3. How do we prove that invariants hold at call sites
public void Woo(C cp) {
a=_0;
cp.Doo(this);

}

4. No framing: Maodifications are not specified
No knowledge about effect of Doo to its parameter

=» Cannot establish invariant of Simple

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

Questions/Problems/Challenges:

Unit of modularity / boundary?

Does boundary encapsulate static or dynamic entities?
Callbacks, assumptions about invariants?

Hiding and framing?

How to handle object structures?

Subtyping and message dispatch

N o O~ b~

Inheritance and extended state

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SoT-eX

Design space for verification frameworks:

- static vs. dynamic

- modular vs. non-modular

- relation of programming and specification language
- properties/programs of interest

- automatic vs. interactive verification

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

2. Modular Verification of Classes
with Spec#/Booqgie

Main design decisions/focus for Spec#/Boogie:

- modular static verification on class level
- support for dynamic checking
- tight integration of programming and specification

- goals of the approach:
elimination of programming errors
implementation-related properties

- automatic verification based on user annotations

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SoT-eX

Section overview:

2.Introductory Remarks on Spec#/Boogie
3.Modular verification of objects
4.Multi-object invariants and ownership
*Subtyping, inheritance, and extended state

*Remarks on further aspects

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SoT-eX

2.1 Introductory Remarks on Spec#/Boogie

The Spec# Programming System:

Spec# programming language extends C# with:
- non-null types,

- checked exceptions and throws clauses,

- method contracts and object invariants.

Spec# compiler:

- statically enforces non-null types

- emits run-time checks for method contracts and invariants
- records the contracts as metadata for downstream tools

Spec# static program verifier Boogie:
- generates logical verification conditions
- uses automatic theorem prover

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

Classic verification example: Insertion sort

class ArraySort {// Insertion Sort Method by R. Monahan & R. Leino / APH
public static void sortArray(int[]! a)
modifies a[*];
ensures forall{int j in (1:a.Length);(a[j-1] <= a[j])};
{
int t, k=1;
if (a.Length > 0) {
while(k < a.Length)
invariant 1 <=k && k <= a.Length;
invariant forall { intjin (1:k), intiin (0:)); (a[i] <= a[j]) };

{

for(t=k; t>0 && a[t-1]>a[t]; t--)
invariant k < a.Length;
invariant 0<=t && t<=k;
invariant forall { intjin (1:k+1), intiin (0:)); j==t|| a[i] <= a[j] };

{ inttemp; temp = a[t]; a[t] = a[t-1]; a[t-1] =temp; }

K++;

I

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

Spec# Tool Architecture:

| Spec# (annotated C#)

Spec# Compiler

| Annotated CIL
Translator

alboog

BoogiePL
VC Generator
Verification conditions

Automatic Theorem Prover

!

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SoT-eX

Goals of the Spec# Project:

Experiment with programming logic,
l.e., the generation of verification conditions

Experiment with programming methodology,
l.e., which constructs allow for simpler reasoning

Build a componentized,

Apply it to real code bases

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

2.2 Modular Verification of Objects

Modular verification needs a notion of consistency for
- objects
- object structures

=» Formulate consistency by object invariants

Reasons:

*Hiding: Consistency might depend on private information

*Modularity: Assumptions on objects/classes out of scope
are needed for verification

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

Hiding: Consistency might depend on private information

class C { class C {
private int a, z; private int a, z;
public void M() invariant a # O;
requires a # 0; public void M()
{z:=100/a;} {z:=100/a;}
} }

Field a not allowed in public requires clause

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

Modularity: Assumptions on objects/classes out of scope
are needed for verification

public class Broker

{ _ _ _ How do we know
public void Call(IService! ms) { about consistenc
} ms.Do(); of ms?

}

public class |Service

{ O
virtual public int Do() T s is of unknown

modifies this.O; :

s @] dynamic type

}

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

public class Service : [Service

string s;
invariant s !=null;

public Service(string! s)
{this.s =s; }

override public int Do()
{ return s.Length; }

}

Depends on
Invariant

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

... how that we have invariants:

* What is their meaning/when should they hold?

* What are they allowed to depend on?

Spec# approach to consistency and invariants:

* Invariants define what should hold in consistent states
* Programmer defines when objects should be consistent

* A consistency discipline
- yields assumptions about objects out of scope

- avoids callback problems

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

... in a setting w/o owners and w/o inheritance:

Obiject o is consistent / valid
* when the constructor has finished

* when o is not exposed / mutable.

Central modularity invariant:

(Lo« o. IskExposed Linv (0))

Obiject is peer consistent

* if it and all its peers are consistent.

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

Exposing objects:

}

class Counter{

int c;

bool even;

invariant 0 <=c;

invariant even <==>c¢ % 2 == 0;

public Counter()

The invariant may be
broken in the constructor

{ C= O, PR
even = true;

r The invariant must be

P
public void Inc ()
modifies c,even;
ensures c == old(c)+1;
{ expose (this) {
C++;
even = leven ;
}
}

established & checked
after construction

~ ™
The object invariant

may be broken within an
expose block
N S

Cost Winter School 2009

@ Arnd Poetzsch-Heffter

[]
O 0e
[}
Arbeitsgruppe Softwaretechnik

Consistency provide assumptions on unknown objects:

Per default method and results are peer consistent.

public class Broker
{
[NoDefaultContract]
public void Call(IService! ms)
requires this.IsPeerConsistent
&& ms.IsPeerConsistent;

public class IService
{
[NoDefaultContract]
virtual public int Do()
requires this.IsPeerConsistent;
modifies this.O;

ensures this.IsPeerConsistent; {
{ return O;
ms.Do(); }
} }
P

\

ms Is peer consistent, thus its invariant holds

Cost Winter School 2009

@ Arnd Poetzsch-Heffter

[]
o 0e
[}
Arbeitsgruppe Softwaretechnik

Callbacks and exposed objects:

class Broker

{
Boolean locked:;
invariant ! locked;

public void CallService(Service! ms)
modifies locked;
{
expose(this) {
locked = true;
ms.Do();
locked = false;
}
}
public void Foo()
modifies this.O;
{
if(locked) {
int[] a = new int[10];

Y

a[20] = a[21];

this exposed =>»
this is not consistent

ms is not peer consistent

Even if only consistency
IS required for targets =»
No callbacks into

exposed objects

Cost Winter School 2009

@ Arnd Poetzsch-Heffter

[]
o 0e
[}
Arbeitsgruppe Softwaretechnik

|s this enough? - A case study:

class class Purse {
[SpecPublic] int amount;
invariant 0 <= amount;

public Purse(int amt)
requires amt >= 0;
ensures amount == amt;
{ amount = amt; }

public int contains()
modifies this.O;
ensures result == amount;
{ return amount; }

... let's use the purse!

public int take(intamt)
requires amt > 0;
modifies amount;
ensures
amount >= old(max{0,amount-amt});

int rtnamt =
(amount >= amt ? amt : amount);
expose(this) {
amount -= rthamt;

}

return rtnamt;

Cost Winter School 2009

@ Arnd Poetzsch-Heffter SOF:eX

class Person {
Purse! purse;
invariant purse.amount >= 100;

public Person() {
{ purse = new Purse(100); base(); }

public bool pay(Person! p, int amt)
requires amt > 0;
modifies p.*, purse;

{
int payedamt = 0;

if(purse.contains() >= amt+100) {
payedamt = purse.take(amt);
}

p.recieve(payedamt);
return payedamt!=0;

}

void recieve(intamt X /*...*/}

Multi-object invariant

Control of invariant
in the presense of
aliasing?

Who checks
multi-object
invariants?

Possible invariant violation

Cost Winter School 2009

@ Arnd Poetzsch-Heffter

n
o 0e
[}
Arbeitsgruppe Softwaretechnik

2.3 Multi-Object Invariants and Ownership

Problem: (W

Above technique not sufficient for invariants L)

depending on representation objects. 4
owned by

Approach: (')

* Establish hierarchy (ownership) on objects .)

* Ownership discipline: When an object is exposed, so
are its (transitive) owners

* An invariant of object x may only depend on
- The fields of x and
- The fields of objects (transitively) owned by x

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

Ownership as additional structure in the heap:

0"' .
: Points to owner

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SoT-eX

Dynamic ownership:

class Person {
[Rep] Purse! purse;
[Peer] Person spouse;

* Each object has a special
field, owner, that points to
its owner object

« owner is set when the }

object is created

* rep and peer declarations

: T . invariant purse.owner = this;
lead to implicit invariants

invariant spouse # null [
spouse.owner = this.owner;

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

... in a setting with owners and w/o inheritance:

Obiject o is consistent / valid
* when the constructor has finished
* when o is not exposed / mutable and

* either has no owner or the owner is exposed.

Obiject is peer consistent if it and all its peers are consistent.

Object o is committed
* when the constructor has finished
* when o is not exposed / mutable and

* it has an owner and the owner is not exposed.

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

Enforcing the ownership discipline:

N . .
sl feslesl N
@ oxvosea - -

D consistent
- committed

Entering expose block for x (unpack) moves area down.

Leaving expose block moves area up.
Together: Order enforces ownership discipline!

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SoT-eX

class Person {
[Rep] Purse! purse;
invariant purse.amount >= 100;

public Person() {
{ purse = new Purse(100); base(); }

public bool pay(Person! p, int
requires amt > 0;
modifies p.*, purse;
{

int payedamt = %
expose(this) {

if(purse.contains() >= amt+100) {

this
purse committed

this exposed
purse

payedamt = purse.take(amt);
)

p.recieve(payedamt);
return payedamt!=0;

}

void recieve(intamt X /*...*/}

this
purse committed

Check invariant when
leaving expose block

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

Remarks on method framing:

* Ownership is a general means of abstraction
- Addresses the transitivity problem of modifies clauses
* Allow methods to modify committed objects

* Given class A { [Rep] B b; }
class B { [Rep] C c; }

the method void M(A a)
modifies a.*; { ...}

Is allowed to modify the fields of a.b and a.b.c

Cost Winter School 2009 @ Arnd Poetzsch-Heffter SOFeX

