
Modular Verification in
Object-oriented

Programming

Arnd Poetzsch-Heffter
University of Kaiserslautern

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Kaiserslautern

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

3

Overview:

• Introduction

• Modular Verification of Classes with Spec#

• Modular Behavioural Specification (& Verification)

• Concluding Remarks

MANY THANKS TO THEM

Slides partially adopted from

Mike Barnett, Manuel Fähndrich, Rustan Leino,
Peter Müller, and Wolfram Schulte

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

ddd

0

5

10

15

20

25

30

35

40

1980 1990 1992 1994 1996 1998 2000 2002

Linux

Windows

Solaris

Source Lines (millions)

1. Introduction

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Goals of static and dynamic verification:

1. Detection of programming errors:

 - No IndexOutOfBounds-, NullPointer-, Cast-,

 DivisionByZero-exception

 - Language-based properties: no need for specification

2. Guaranteed/checked program-specific properties:

 - Specification of properties: need for spec. language

 - Support of behavioral abstraction

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

class Simple {

 int a, b;

 public Simple(int ap, int bp)

 { a = ap; b = bp; }

 public int Foo(int x)

 {

 int tmp = x / (b-a);

 a += tmp; b+= tmp;

 return b-a;

 }

}

No division by zero!

How can we
prove it

modularily?

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

class Simple {

 int a, b;

 invariant a < b;

 public Simple(int ap, int bp)

 requires ap < bp;

 ensures a==ap && b==bp;

 { a = ap; b = bp; }

 public int Foo(int x)

 ensures result > 0;

 {

 ... // see above

 }}

program-specific
specification

 When is a specification
“sufficient” for modular

verification?

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

interface Simple {

 public Simple(int ap, int bp)

 public int Foo(int x)

 }
 What is the boundary

 of an object or
of class/module?

precisely

interface Simple {

 model int c;

 public Simple(int ap, int bp)

 requires ap < bp;

 ensures c == bp-ap ;

 public int Foo(int x)

 ensures result == c;

 }

behavioral spec
at boundary

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Goals of modularity:

2.Verification of modules/libraries without knowing the

 application context:

 - Which application contexts are admissible?

2. Module contracts:

 - Providers can modify implementation

 - Users need not to know implementation

3. Scalability through compositionality:

 - To verify M use only the contracts of modules used by M

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

M_1 M_n…

P_1 P_c…

MN_1 N_1
known

unknown

... at verification time

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Modular verification technique:

a) Technique(s) to verify program modules

•Proof of modular soundness:

 All proofs done on program modules
 remain valid in all admissible contexts.

Modularity depends on sophisticated interplay of:

- Programming language semantics

- Specification language and technique

- Programming logic

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Modular Verification Technique: A Gedankenexperiment

- Programming language:
 Class-based language w/o inheritance and subtyping
 No reference types for fields
 No recursive methods, sequential statements/expressions

- Specification language and technique:
 Pre-, postconditions, object invariants
 Assertions: boolean expressions over fields and params

- Programming logic:
 Wp-calculus for method bodies
 Preconditions & invariants may be assumed in prestates
 Postconditions & invariants have to be proven for poststates
 Pre-/postconditions may be used to verify calls

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

class Simple {

 int a, b;

 invariant a < b;

 public Simple(int ap, int bp)

 requires ap < bp;

 { a = ap; b = bp; }

 public int Foo(int x) {

 int tmp = x / (b-a);

 a += tmp; b+= tmp;

 return b-a;

 }

 ...

...

 public void Woo(C cp) {

 a = 0;

 cp.Doo(this);

 b = a + 1;

 }

}

class C {

 invariant ... ;

 public void Doo(Simple s)

 { ... }

}

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

At least four problems:

1. Fields are not encapsulated

 Simple s = new Simple(0,1);

 s.a =1;

 public void Doo(Simple s)

 { s.Foo(1); }

2. Callbacks are possible on objects with violated invariants

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

(problems continued:)

3. How do we prove that invariants hold at call sites

 public void Woo(C cp) {

 a = 0;

 cp.Doo(this);

 ...

 }

4. No framing: Modifications are not specified

 No knowledge about effect of Doo to its parameter

  Cannot establish invariant of Simple

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Questions/Problems/Challenges:

1. Unit of modularity / boundary?

2. Does boundary encapsulate static or dynamic entities?

3. Callbacks, assumptions about invariants?

4. Hiding and framing?

5. How to handle object structures?

6. Subtyping and message dispatch

7. Inheritance and extended state

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Design space for verification frameworks:

- static vs. dynamic

- modular vs. non-modular

- relation of programming and specification language

- properties/programs of interest

- automatic vs. interactive verification

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

18

2. Modular Verification of Classes
 with Spec#/Boogie

Main design decisions/focus for Spec#/Boogie:

- modular static verification on class level

- support for dynamic checking

- tight integration of programming and specification

- goals of the approach:
 elimination of programming errors
 implementation-related properties

- automatic verification based on user annotations

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Section overview:

2.Introductory Remarks on Spec#/Boogie

3.Modular verification of objects

4.Multi-object invariants and ownership

•Subtyping, inheritance, and extended state

•Remarks on further aspects

Spec#/Boogie has been developed at Microsoft Research
(Redmond) under the lead of K. Rustan M. Leino.

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

2.1 Introductory Remarks on Spec#/Boogie

The Spec# Programming System:

Spec# programming language extends C# with:
 - non-null types,
 - checked exceptions and throws clauses,
 - method contracts and object invariants.

Spec# compiler:
 - statically enforces non-null types
 - emits run-time checks for method contracts and invariants
 - records the contracts as metadata for downstream tools

Spec# static program verifier Boogie:
 - generates logical verification conditions
 - uses automatic theorem prover

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Classic verification example: Insertion sort

class ArraySort { // Insertion Sort Method by R. Monahan & R. Leino / APH
 public static void sortArray(int[]! a)
 modifies a[*];
 ensures forall{int j in (1:a.Length);(a[j-1] <= a[j])};
 {
 int t, k=1;
 if (a.Length > 0) {
 while(k < a.Length)
 invariant 1 <= k && k <= a.Length;
 invariant forall { int j in (1:k), int i in (0:j); (a[i] <= a[j]) };
 {
 for(t = k; t>0 && a[t-1]>a[t]; t--)
 invariant k < a.Length;
 invariant 0<=t && t<=k;
 invariant forall { int j in (1:k+1), int i in (0:j); j==t || a[i] <= a[j] };
 { int temp; temp = a[t]; a[t] = a[t-1]; a[t-1] = temp; }
 k++;
 } } }

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

B
oogie

Spec# Tool Architecture:

Spec# (annotated C#)

BoogiePL

Spec# Compiler

Translator

VC Generator

Verification conditions

Automatic Theorem Prover

Annotated CIL

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Goals of the Spec# Project:

• Experiment with programming logic,
 i.e., the generation of verification conditions

• Experiment with programming methodology,
 i.e., which constructs allow for simpler reasoning

• Build a componentized, state-of-the-art verifier

• Apply it to real code bases

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Modular verification needs a notion of consistency for

- objects

- object structures

 Formulate consistency by object invariants

Reasons:

•Hiding: Consistency might depend on private information

•Modularity: Assumptions on objects/classes out of scope

 are needed for verification

2.2 Modular Verification of Objects

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Field a not allowed in public requires clause

class C {
 private int a, z;
 public void M()
 requires a ≠ 0;
 { z := 100 / a; }
}

class C {
 private int a, z;
 invariant a ≠ 0;
 public void M()
 { z := 100 / a; }
}

Hiding: Consistency might depend on private information

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Modularity: Assumptions on objects/classes out of scope

 are needed for verification

public class Broker
{
 public void Call(IService! ms) {
 ms.Do();
 }
}

public class IService
{
 virtual public int Do()
 modifies this.0;
 { return 0; }
}

ms is of unknown
dynamic type

 How do we know
about consistency

of ms?

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

public class Service : IService
{
 string s;
 invariant s != null;

 public Service(string! s)
 { this.s = s; }

 override public int Do()
 { return s.Length; }
}

 Depends on
invariant

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Spec# approach to consistency and invariants:

• Invariants define what should hold in consistent states

• Programmer defines when objects should be consistent

• A consistency discipline :

 - yields assumptions about objects out of scope

 - avoids callback problems

… now that we have invariants:

• What is their meaning/when should they hold?

• What are they allowed to depend on?

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

… in a setting w/o owners and w/o inheritance:

Object o is consistent / valid

• when the constructor has finished

• when o is not exposed / mutable.

Central modularity invariant:

 (∀o • o. IsExposed ∨ Inv (o))

Object is peer consistent

• if it and all its peers are consistent.

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

class Counter{
int c;
bool even;
invariant 0 <= c;
invariant even <==> c % 2 == 0;

public Counter()
{ c= 0;

even = true;
}

public void Inc ()
 modifies c,even;
 ensures c == old(c)+1;
{ expose (this) {
 c++;
 even = !even ;
 }

} }

 The invariant may be
 broken in the constructor

The invariant must be
established & checked
after construction

The object invariant
may be broken within an
 expose block

Exposing objects:

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Consistency provide assumptions on unknown objects:

Per default method and results are peer consistent.

public class Broker
{
 [NoDefaultContract]
 public void Call(IService! ms)
 requires this.IsPeerConsistent
 && ms.IsPeerConsistent;
 ensures this.IsPeerConsistent;
 {
 ms.Do();
 }
}

public class IService
{
 [NoDefaultContract]
 virtual public int Do()
 requires this.IsPeerConsistent;
 modifies this.0;
 {
 return 0;
 }
}

ms is peer consistent, thus its invariant holds

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Callbacks and exposed objects:

class Broker
{
 Boolean locked;
 invariant ! locked;

 public void CallService(Service! ms)
 modifies locked;
 {
 expose(this) {
 locked = true;
 ms.Do();
 locked = false;
 }
 }
 public void Foo()
 modifies this.0;
 {
 if(locked) {
 int[] a = new int[10]; a[20] = a[21];
} } }

this exposed 

 this is not consistent

 ms is not peer consistent

Even if only consistency

is required for targets 

No callbacks into

exposed objects

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Is this enough? - A case study:

class class Purse {
 [SpecPublic] int amount;
 invariant 0 <= amount;

 public Purse(int amt)
 requires amt >= 0;
 ensures amount == amt;
 { amount = amt; }

 public int contains()
 modifies this.0;
 ensures result == amount;
 { return amount; }
 …

…

 public int take(int amt)
 requires amt > 0;
 modifies amount;
 ensures
 amount >= old(max{0,amount-amt});
 {
 int rtnamt =
 (amount >= amt ? amt : amount);
 expose(this) {
 amount -= rtnamt;
 }
 return rtnamt;
 }
}

… let‘s use the purse!

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

class Person {
 Purse! purse;
 invariant purse.amount >= 100;

 public Person() {
 { purse = new Purse(100); base(); }

 public bool pay(Person! p, int amt)
 requires amt > 0;
 modifies p.*, purse;
 {
 int payedamt = 0;

 if(purse.contains() >= amt+100) {
 payedamt = purse.take(amt);
 }
 p.recieve(payedamt);
 return payedamt!=0;
 }

 void recieve(int amt){ /* ... */ }
}

Multi-object invariant

Control of invariant
in the presense of

aliasing?

Possible invariant violation

Who checks
multi-object
invariants?

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Above technique not sufficient for invariants
depending on representation objects.

Problem:

2.3 Multi-Object Invariants and Ownership

• Establish hierarchy (ownership) on objects
• Ownership discipline: When an object is exposed, so

are its (transitive) owners
• An invariant of object x may only depend on

- The fields of x and
- The fields of objects (transitively) owned by x

 : Purse

 : Person

owned by

Approach:

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Ownership as additional structure in the heap:

Points to owner

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Dynamic ownership:

• Each object has a special
field, owner, that points to
its owner object

• owner is set when the
object is created

• rep and peer declarations
lead to implicit invariants

class Person {
 [Rep] Purse! purse;
 [Peer] Person spouse;
 …
}

invariant purse.owner = this;

invariant spouse ≠ null ⇒
spouse.owner = this.owner;

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

… in a setting with owners and w/o inheritance:

Object o is consistent / valid

• when the constructor has finished

• when o is not exposed / mutable and

• either has no owner or the owner is exposed.

Object o is committed

• when the constructor has finished

• when o is not exposed / mutable and

• it has an owner and the owner is not exposed.

Object is peer consistent if it and all its peers are consistent.

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Enforcing the ownership discipline:

Entering expose block for x (unpack) moves area down.

Leaving expose block moves area up.

Together: Order enforces ownership discipline!

exposed

consistent

committed

x

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

class Person {
 [Rep] Purse! purse;
 invariant purse.amount >= 100;

 public Person() {
 { purse = new Purse(100); base(); }

 public bool pay(Person! p, int amt)
 requires amt > 0;
 modifies p.*, purse;
 {
 int payedamt = 0;
 expose(this) {
 if(purse.contains() >= amt+100) {
 payedamt = purse.take(amt);
 } }
 p.recieve(payedamt);
 return payedamt!=0;
 }

 void recieve(int amt){ /* ... */ }
}

this consistent
purse committed

this exposed
purse consistent

this consistent
purse committed

Check invariant when
leaving expose block

Cost Winter School 2009 @ Arnd Poetzsch-Heffter

Remarks on method framing:

• Ownership is a general means of abstraction

 - Addresses the transitivity problem of modifies clauses

• Allow methods to modify committed objects

• Given

the method

is allowed to modify the fields of a.b and a.b.c

class A { [Rep] B b; }
class B { [Rep] C c; }

void M(A a)
 modifies a.*; { … }

